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Einstein's concept of the "strength" of a system of field equations, which has 
been related in a simple way to the amount of initial data required for the 
system, is examined for his last unified field theory. The apparently surprising 
weakness of this system is traced to the high order of the associated electromag- 
netic field equations. These equations allow the existence of purely electric 
longitudinal waves, in spite of the absence of any "photon mass." 

In his last work on unified field theory, Einstein (1955) introduced a 
way of quantifying what he called the "strength" of a system of field 
equations. The field components are expanded in Taylor series, and the 
number of nth-order coefficients left free by the field equations, with 
proper accounting for identities and gauge freedom, is calculated. The 
asymptotic value of this quantity is of the form 

z ~  [4.5. . .  (n + 3) /1 .2 . . .  n] (Zlln) (1) 

z~ was called the "coefficient of freedom" by Einstein. For the scalar wave 
equation, z~ =6, while z I = 12 both for Maxwell's vacuum equations and 
for Einstein's vacuum gravitational equations. On the other hand, zl =42 
for the nonsymmetric, mixed affine-metric field equations which Einstein 
proposed as a unified field theory. 

The precise significance of this "coefficient of freedom" remained 
unclear for some time. Finally, Schutz (1975) showed that Zl/3 is the 
number of free initial data which can be specified for the system at each 
point of a spacelike hypersurface. The results mentioned above are thus in 
agreement with the well-known facts that the scalar wave equation de- 
scribes a physical system with one degree of freedom, requiring two initial 
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data per space point, while Maxwell's and Einstein's gravitational equations 
each describe systems with two degrees of freedom per space point. Other 
systems of field equations have been considered by Mariwalla (1974) and 
by Burman (1977). 

The result z~ =42 for Einstein's nonsymmetric theory has, however, 
remained unexplained. This result might suggest that the fields described 
by this theory possess a total of seven degrees of freedom per space point, 
prompting speculation about photon or graviton masses, or about new 
types of fields in addition to the gravitational and electromagnetic ones. 

It will be shown here that this theory's required 14 pieces of initial 
data per space point (rather than the 8 which would be needed for the 
uncoupled Einstein-Maxwell equations) are due to the higher differential 
order of the new field equations. This will be shown by means of an 
analysis of the weak-field limit of the system, a limit which should 
introduce no specialization as far as the number of degrees of freedom of 
the system is concerned. In this limit, the only new wave mode which is 
introduced is a longitudinal electric wave. 

The field equations which we wish to consider can be put into the 
form 

* R(~x) = 0 

* RI~Xl,, + * R[x,l,~ + * R[,~I,X = 0 

g~,x - * r ~ g ~ -  * r L g  ~ = o 

(2a) 

(2b) 

(2c) 

with *R,~ the Ricci tensor of Schr6dinger's (1963) star affinity, 

1 h t~ 
* r  - -  + 

Here square and round brackets indicate, respectively, antisymmetrization 
and symmetrization. 

An important consequence of the preceding equations is 

~t~'l,~--0 (3) 

where g~" is a contravariant tensor density associated with the nonsymmet- 
ric field g~. 

The set of equations (2c) has been solved by Hlavat~, (1957). We shall 
require here only the solution through terms linear in the fields k~-------g|~,l 
and h~,~----g(~,)-~l~.,,~l~ being the metric tensor of flat space-time. This 
approximate expression for the star affinity is 

1 ~ r I, *F~.~ "~ (x~,) + i ( k  ~.x + kx .~ + kx~. ) (4) 
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where {ff~,} is the Christoffei affinity formed from g(~), to first order in 
h~. Indices are raised and lowered with ,/~, in accord with our linear 
approximation. 

The set of equations (2a) is just the statement that the linearized Ricci 
tensor formed from g(~,) must vanish. Thus we have the linearized gravita- 
tional field equations for vacuum, which require four pieces of data per 
space point for their initial-value problem. 

Equation (3) becomes, in this approximation, 

I , . ; ' = o  (5) 

and this result allows us to reduce equation (2b) to the form 

FV,,,,,. + + = o (6) 

For a count of the initial data required for equations (5) and (6), the 
precise way in which the electromagnetic field F~, made up of the 
3-vectors E and B in the usual way, is identified with components of the 
skew-symmetric tensor kw is unimportant. Here I shall treat k~ as the dual 
of F~ (e.g., Murphy, 1975). The set (5) then yields half of Maxwell's 
vacuum equations, 

V - B = 0  (7a) 

and 

on/ot-- - v • E (7b) 

The set (6), however, will give us only the d'Alembertian of the other 
half of Maxwell's equation. We can write this set in the form 

v .  a :E/at: = v:(v.E) (8a) 

3E/Ot 3 - V X 0 2B/at 2 - V2aE/at = - V2(V x B) (8b) 

[Alternatively, the time derivative of B in (8b) may be eliminated by means 
of (7b).] 

We must now count the data which must be specified at each point of 
the spacelike hypersurface t = 0 for the analytic Cauchy problem. Three 
components of B are subject to the constraint (7a), as in Maxwellian 
electrodynamics, leaving two independent components of the magnetic 
induction to be chosen freely. Three components of E can also be chosen 
freely, and aB/Ot will then be given by (7b). 

We now consider the equation (8b). This involves second time deriva- 
tives of B, and third time derivatives of those of E. B and aB/Ot are 



326 Murphy 

already taken care of in our previous count, and E is also given. In addition, 
we must specify the six components of OE/at and O2E/Ot2 in order to 
obtain a unique solution of (8b). 

However, the components of ~ 2E/St2 cannot be given arbitrarily, for 
they must satisfy the constraint (8a). Thus a total of five functions will give 
the required time derivatives of the electric field on the initial-value 
hypersurface. These, together with the three components of E and the two 
free components of B, make up ten pieces of electromagnetic data per 
space point. The gravitational degrees of freedom bring the total data per 
space point for the original system of field equations to the desired value 
14=zl /3 .  

As one would expect, there are solutions to the system of equations (7) 
and (8) which are not shared by Maxwell's equations. If we look for 
solutions of the form 

E= Eoexp[ i ( k . x -  o~t) ], B =Boexp[ i ( k . x -  o~t)] 

then we find from (7) and (8) that we must require 

k ' B o = 0  (9a) 

k • E o = wB o (9b) 

(k. Eo)(O~ 2 - k 2) -- 0 (9c) 

- k2) [ E0(,o2 _ + k ( k - E 0 )  ] -- 0 (9d) 

if B 0 is eliminated from the final equation by means of (9b). 
The first two equations of this set tell us that, as usual, the magnetic 

induction must be orthogonal both to the propagation vector and to the 
electric field. (9c) then states that either the electric field is orthogonal to 
the propagation vector or the phase velocity of the waves is unity. If we 
chose k-E o=0, (9d) then tells us that we will also have k2=r z in all 
nontrivial cases. However, k 2---o~ 2 ensures that both (9c) and (9d) will be 
satisfied without any other conditions. Thus it is not necessary that k and 
E o be orthogonal, and longitudinal electric waves can exist. 

These longitudinal electric waves (with which no magnetic induction 
need be associated) travel at unit speed, and the theory here is, in general, 
rather different from theories with a photon mass in which longitudinally 
polarized waves appear. [See, for example, Murphy and Burman (1978) for 
observational limits on such theories.] Nevertheless, the existence of such 
longitudinal waves suggests, in principle, observational tests of Einstein's 
unified field theory. What is now required is a model for the coupling of 
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the electromagnetic field to charges which would allow the intensity of 
emitted longitudinal waves to be calculated for this theory. 

REFERENCES 

Burman, R. (1977). Czechoslovak Journal of Physics, B27, 113. 
Einstein, A. (1955). The Meaning of Relativity, Appendix II. Princeton University Press, 

Princeton, New Jersey. 
Hlavat~, V. (1957). Geometry of Einstein's UnifiedFieM Theory, especially p. 93. P. Noordhoff 

Ltd., Groningen. 
Mariwalla, K. H. (1974). Journal of Mathematical Physics, 15, 468. 
Murphy, G. L. (1975). Physical Review D 11, 2752. 
Murphy, G. L. and Burman, R. R. (1978). Astrophysics and Space Science, 56, 363. 
Schrodinger, E. (1963). Space-Time Structure, Chap. XII. Cambridge University Press, 

Cambridge. 
Schutz, B. (1975). Journal of Mathematical Physics, 16, 855. 


